

# **GENERAL INFORMATION**

## **RUBBERS**

Natural Rubber **Butadiene Styrene** Silicone Nitrile Polyisobutylene Acrylic Ethylene Propylene Polyisoprene Fluorosilicone Viton Neoprene Butadiene Hypalon **Buna N** Polyurethane **Butyl** Natsyn

## **PLASTICS**

Nylon ABS Acrylic Polyester Polyurethane Polybutylene Polycarbonate **Polyethylene** Polypropylene Polystyrene **Polyvinyl Chloride** Acetal **Fluoropolymers** Polyarylether **Diallyl Phthalate Phenolics** 

## **TPEs\* & TPRs\*\***

Styrenic Block Copolymer Rubber-Polyolefin In Blends Elastomeric Alloys Thermoplastic Polyurethane Thermoplastic Copolyester Thermoplastic Polyamide Santoprene Alcryn Draton Hytrel Estamid

\*Thermoplastic Elastomers \*\*Thermoplastic Rubbers

# MILITARY & COMMERCIAL SPECIFICATIONS:

ASTM D-2000 Class AA, BA, BC, BE, BF, BG, CA, OE, CH, DA, FC, FE, GE, HK • MIL-R-3065, MIL-STD-417, ZZ-R-765, MIL-R-6855, MIL-R-800, MIL-R-900, MIL-R-1149, MIL-R-15624, MIL-R-2765 • AMS-3200 thru AMS-7276 • Hardness Range 25 Shore A to 50 Shore D.

## Prototyping......Rubber • Plastic • TPEs

Our unique "Master Molds" concept can produce the rubber, plastic, TPR and TPE components you need quickly and efficiently. Our designers and engineers will work hand-in-hand with you on the design, set-up, tooling, compound development, and production requirements.

# ENGINEERING GUIDE

## LONGWOOD'S ENGINEERING GUIDE

### To the Properties of Natural and Synthetic Rubber

This reference chart has been prepared to be a helpful guide to the design engineer in the selection of basic rubber polymers. Because of the variety of polymers and thousands of different compounding ingredients, there is an almost limitless number of possible rubber compounds. Therefore, successful engineering of a rubber application requires close collaboration with Longwood Engineering as to the specific service and ultimate use of the part.

| Property                         | Natural<br>Rubber | SBR<br>(Buna-S) | Nitrile<br>(Buna-N) | Neoprene | Butyl | Fluro-<br>Silicone | Silicone | Hypalon** | Poly-<br>Acrylic | Poly-<br>Urethane | Viton** |
|----------------------------------|-------------------|-----------------|---------------------|----------|-------|--------------------|----------|-----------|------------------|-------------------|---------|
| Tensile Strength (PSI)           | 4500              | 3000            | 3500                | 3500     | 3000  | 1200               | 1500     | 4000      | 1800             | 5500              | 2000    |
| Elongation                       | 700               | 500             | 500                 | 500      | 600   | 300                | 300      | 300       | 200              | 800               | 250     |
| Tear Resistance                  | EX                | F               | F                   | G        | G     | F                  | P-F      | EX        | F                | G                 | G       |
| Abrasion Resistance              | EX                | G               | G                   | EX       | F     | Р                  | Р        | EX        | G                | EX                | G       |
| Resilience                       | VG                | F               | F                   | VG       | VG    | G                  | G        | G         | VG               | VG                | F       |
| Gas Permeability                 | F                 | VG              | VG                  | F        | VG    | F                  | F        | VG        | G                | G                 | F       |
| Low Temp. Flexibility (max.)     | -65°F             | -75°F           | -75°F               | -65°F    | -65°F | -90°F              | -130°F   | -40°F     | -20°F            | -65°F             | -40°F   |
| High Temp. (max.)                | 300°F             | 275°F           | 300°F               | 300°F    | 300°F | 550°F              | 550°F    | 300°F     | 350°F            | 250°F             | 600°F   |
| Sunlight Resistance              | Р                 | Р               | Р                   | EX       | EX    | G                  | G        | EX        | EX               | EX                | G       |
| Oxidation Resistance             | G                 | F               | F                   | G        | G     | VG                 | VG       | VG        | EX               | F                 | EX      |
| Flex Cracking Resistance         | EX                | G               | G                   | EX       | EX    | F                  | F        | G         | G                | F                 | G       |
| Compression Set Resistance       | VG                | G               | VG                  | VG       | F     | VG                 | VG       | F         | G                | F                 | VG      |
| Water Resistance                 | G                 | VG              | VG                  | F        | VG    | F                  | F        | Р         | F                | Р                 | VG      |
| Alkali (dilute) Resistance       | G                 | G               | G                   | G        | VG    | F                  | F        | G         | Р                | Р                 | F       |
| Alkali (concentrated) Resistance | F                 | F               | F                   | G        | VG    | F                  | Р        | G         | Р                | VP                | Р       |
| Acid (dilute) Resistance         | G                 | G               | G                   | F        | G     | F                  | F        | G         | Р                | Р                 | EX      |
| Acid (concentrated) Resistance*  | F                 | Р               | Р                   | F        | F     | Р                  | Р        | G         | Р                | VP                | EX      |
| Low Aniline Oil Resistance       | VP                | VP              | EX                  | F        | VP    | F                  | Р        | F         | EX               | F                 | EX      |
| High Aniline Oil Resistance      | VP                | VP              | EX                  | G        | VP    | G                  | G        | G         | EX               | G                 | EX      |
| Synthetic Lubricant Resistance   | VP                | VP              | G                   | VP       | Р     | G                  | F        | Р         | F                | Р                 | EX      |
| Organic Phosphate Resistance     | VP                | VP              | VP                  | VP       | G     | Р                  | Р        | Р         | Р                | VP                | F       |
| Aromatic Solvent Resistance      | VP                | VP              | F                   | Р        | VP    | G                  | VP       | Р         | Р                | Р                 | EX      |
| Aliphatic Solvent Resistance     | VP                | VP              | G                   | F        | Р     | G                  | Р        | F         | G                | F                 | EX      |
| Oxygenated Solvent Resistance    | G                 | G               | Р                   | F        | G     | G                  | Р        | Р         | Р                | VP                | EX      |
| Halogenated Solvent Resistance   | VP                | VP              | F                   | VP       | Р     | Р                  | VP       | VP        | Р                | VP                | EX      |
| Aromatic Fuel Resistance         | VP                | VP              | G                   | G        | VG    | G                  | Р        | Р         | F                | Р                 | EX      |
| Non-Aromatic Fuel Resistance     | VP                | VP              | EX                  | G        | VG    | G                  | G        | F         | Р                | G                 | EX      |

\*Except Nitric and Sulfuric \*\*Trademark of E.I. DuPont

Key: VP = Very Poor; P = Poor; F = Fair; G = Good; VG = Very Good; EX = Excellent

## Longwood's Testing Capabilities to ASTM Standards

- D 395 **Compression Set**
- D 412 Tensile Testing Rubber
- D 413 Rubber Adhesion Testing
- Rubber Adhesion to Metal D 429
- D 430 Dynamic Fatigue Testing of Rubber
- Effect of Liquids on Rubber Properties D 471
- Rubber Deterioration Due to Ozone D 518
- D 573 Rubber Deterioration in Air Oven
- D 575 Compression-Deflation of Rubber
- D 624 Tear Resistance of Rubber
- D 735 **Specifications Properties**

- D 865 Rubber Deterioration in Test Tube Aging
- D 1084 Viscosity of Adhesives
- D 1149 Surface Ozone Cracking in Chamber
- D 1171 Surface Ozone Cracking—Outdoor and/or Chamber
- D 1329 Low Temperature Retraction
- D 1415 Microhardness, International
- D 1646 Mooney Viscosity & Scorch Test
- D 2084 Rheometer Cure Method
- D 2240 Shore Hardness Test
  - LONGWOODINDUSTRIES.COM